Programmation dynamique

On a déja vu en premiere année plusieurs stratégies pour résoudre un probléme, chacune ayant ses limita-
tions :

— force brute (mais probléme de temps),
— stratégie gloutonne (mais solution pas nécessairement optimale),
— diviser pour régner (mais nécessite que les sous-problémes soient indépendants).
La programmation dynamique, terme introduit par Richard BELLMAN au début des années 1950, est une
stratégie employable si le probléme que ’on veut résoudre vérifie deux propriétés :
@ sous-structure optimale : une solution optimale peut étre obtenue a partir de solutions optimales de
sous-problémes ;
@ chevauchement des sous-problémes : les sous-problémes ne sont pas indépendants et doivent étre résolus
plusieurs fois.

Exemple 1 — Un premier exemple sur un graphe }

On considere le graphe suivant :

On souhaite trouver le plus court chemin entre A et F.

1. Que penser d’une méthode par force brute ?

2. Que donne la stratégie gloutonne ?

3. On va utiliser la programmation dynamique.

a) Propriété de sous-structure optimale :

Propriété de chevauchement des sous-problemes :

b) On cherche les plus courts chemins jusqu’a F' en remontant d’une aréte a chaque fois. Compléter
le tableau ci-dessous donnant le cotit et le plus court chemin entre le sommet donné et F' en
utilisant au maximum le nombre d’arétes indiqué.

nb arétes | A B C D E
0 00 00 00 00

1

2

3

4

PC - Chrestien de Troyes 1/2 2025-2026

En pratique, il faut veiller & ne pas recalculer plusieurs fois la solution & un méme sous-probléme afin de
limiter la complexité en temps. Pour ce faire, deux options :

— calcul de haut en bas avec mémoisation : on part du probléme général et on fait des appels récursifs sur
les sous-problemes jusqu’aux cas de base, les solutions des sous-problémes étant stockées en mémoire ;

— calcul de bas en haut : on commence par résoudre les cas de base et on remonte les sous-problemes
jusqu’au cas général en stockant les résultats au fur et a mesure.

Dans les deux cas, il y a une augmentation de la complexité en espace afin de réduire celle en temps, c’est un
compromis. Il peut d’ailleurs parfois étre judicieux de ne stocker qu’une partie des résultats intermédiaires

si tous ne sont pas nécessaires.

[Exemple 2 — Illustration avec la suite de Fibonacci]

Version descendante naive
def fibol(mn: int):
if n == 0 or n == 1:
return n
else:
return fibol(n-1) + fibol(n-2)

ot W N

Pour éviter ces répétitions, on met en ceuvre

La suite de Fibonacci (fy,)nen est définie par fo =0, f1 = 1 et, pour tout n > 2, f,, = fn_1 + fn—2.

La fonction fibo1 traduit directement la dé-
finition de la suite. En pratique elle est tres
rapidement inutilisable car de complexité en
temps exponentielle a cause des nombreuses
répétitions du méme calcul. Par exemple
I’appel fibo1(15) nécessite de calculer 610
fois fo.

Version descendante avec mémoisation

le principe de mémoisation en stockant les ré- 1 MEMO = dict()
sultats intermédiaires. Pour cela, on choisit ici o ded dabezlan Lo
d’utiliser un dictionnaire MEMO comme variable ° if n in MEMO:
4 return MEMO [n]
globale. 5 if n == 0 or n == 1:
Ainsi pour chaque entier, on commence par tes- 6 £ = m
ter si on a déja calculé la valeur correspondante. - else:
Si ce n’est pas le cas, on la calcule et on la 8 f = fibo2(n-1) + fibo2(n-2)
stocke. On obtient ainsi une complexité O(n) J MEMO [n] = f
en temps et O(n) en espace. 0 SoEunL ©
Version ascendante avec dictionnaire .
. def fibo3(m: int): On peut aussi procéder de fagon ascendante, la ré-
. memo = {0: 0, 1: 1} cursivité étant remplacée par une boucle.
3 for k in range(2, n+1): On commence par les sous-problémes de base (les
4 f = memo[k-1] + memo [k-2] deux conditions initiales) puis on les combine pour
5 memo [k] = f obtenir les solutions des problémes de plus en plus
6 Teturn memo[n] grands (valeurs de n croissantes). On stocke a
Version ascendante avec liste chaque fois le résultat obtenu.
1 def fibo3bis(n: int): Pour fibo3, les valeurs sont stockées dans un dic-
2 memo = [0, 1] tionnaire alors que pour fibo3bis, elles le sont dans
3 for k in range(2, n+1): . T . .
., £ = memolk-1] + memo [k-2] une hst'e (car pour une suite I'indexation se fait par
. HEmE . Append (F) les entiers naturels). Dans les deux cas, on a une
. T . complexité O(n) en temps et O(n) en espace.

Enfin, on remarque que le stockage de toutes les valeurs
intermédiaires n’est pas nécessaire. En effet, seules les
deux précédentes sont utilisées pour calculer la valeur
suivante. On peut donc se contenter de mettre a jour
deux variables a chaque itération.

On obtient une complexité O(n) en temps et O(1) en
espace.

[I

Version ascendante avec optimisation mémoire

def fibo4(n: int):
a =0
b =1

for k in range(n):
a, b = Db, a+b
return a

PC - Chrestien de Troyes 2/2

2025-2026

