
Programmation dynamique

On a déjà vu en première année plusieurs stratégies pour résoudre un problème, chacune ayant ses limita-
tions :

— force brute (mais problème de temps),

— stratégie gloutonne (mais solution pas nécessairement optimale),

— diviser pour régner (mais nécessite que les sous-problèmes soient indépendants).

La programmation dynamique, terme introduit par Richard Bellman au début des années 1950, est une
stratégie employable si le problème que l’on veut résoudre vérifie deux propriétés :

d sous-structure optimale : une solution optimale peut être obtenue à partir de solutions optimales de
sous-problèmes ;

e chevauchement des sous-problèmes : les sous-problèmes ne sont pas indépendants et doivent être résolus
plusieurs fois.

Exemple 1 – Un premier exemple sur un graphe

On considère le graphe suivant :

A B C

D E F

3

2

3

4
1

4
1

3 2

On souhaite trouver le plus court chemin entre A et F .

1. Que penser d’une méthode par force brute ?

2. Que donne la stratégie gloutonne ?

3. On va utiliser la programmation dynamique.

a) Propriété de sous-structure optimale :

Propriété de chevauchement des sous-problèmes :

b) On cherche les plus courts chemins jusqu’à F en remontant d’une arête à chaque fois. Compléter
le tableau ci-dessous donnant le coût et le plus court chemin entre le sommet donné et F en
utilisant au maximum le nombre d’arêtes indiqué.

nb arêtes A B C D E

0 ∞ ∞ ∞ ∞ ∞

1

2

3

4

PC - Chrestien de Troyes 1/2 2025–2026



En pratique, il faut veiller à ne pas recalculer plusieurs fois la solution à un même sous-problème afin de
limiter la complexité en temps. Pour ce faire, deux options :

— calcul de haut en bas avec mémoïsation : on part du problème général et on fait des appels récursifs sur
les sous-problèmes jusqu’aux cas de base, les solutions des sous-problèmes étant stockées en mémoire ;

— calcul de bas en haut : on commence par résoudre les cas de base et on remonte les sous-problèmes
jusqu’au cas général en stockant les résultats au fur et à mesure.

Dans les deux cas, il y a une augmentation de la complexité en espace afin de réduire celle en temps, c’est un
compromis. Il peut d’ailleurs parfois être judicieux de ne stocker qu’une partie des résultats intermédiaires
si tous ne sont pas nécessaires.

Exemple 2 – Illustration avec la suite de Fibonacci

La suite de Fibonacci (fn)n∈N est définie par f0 = 0, f1 = 1 et, pour tout n ⩾ 2, fn = fn−1 + fn−2.

Version descendante naïve

1 def fibo1(n: int ):

2 if n == 0 or n == 1:

3 return n

4 else:

5 return fibo1(n -1) + fibo1(n -2)

La fonction fibo1 traduit directement la dé-
finition de la suite. En pratique elle est très
rapidement inutilisable car de complexité en
temps exponentielle à cause des nombreuses
répétitions du même calcul. Par exemple
l’appel fibo1(15) nécessite de calculer 610
fois f2.

Pour éviter ces répétitions, on met en œuvre
le principe de mémoïsation en stockant les ré-
sultats intermédiaires. Pour cela, on choisit ici
d’utiliser un dictionnaire MEMO comme variable
globale.
Ainsi pour chaque entier, on commence par tes-
ter si on a déjà calculé la valeur correspondante.
Si ce n’est pas le cas, on la calcule et on la
stocke. On obtient ainsi une complexité O(n)
en temps et O(n) en espace.

Version descendante avec mémoïsation

1 MEMO = dict ()

2 def fibo2(n: int ):

3 if n in MEMO:

4 return MEMO[n]

5 if n == 0 or n == 1:

6 f = n

7 else:

8 f = fibo2(n -1) + fibo2(n -2)

9 MEMO[n] = f

10 return f

Version ascendante avec dictionnaire

1 def fibo3(n: int ):

2 memo = {0: 0, 1: 1}

3 for k in range (2, n+1):

4 f = memo[k -1] + memo[k -2]

5 memo[k] = f

6 return memo[n]

Version ascendante avec liste

1 def fibo3bis (n: int ):

2 memo = [0, 1]

3 for k in range (2, n+1):

4 f = memo[k -1] + memo[k -2]

5 memo. append (f)

6 return memo[n]

On peut aussi procéder de façon ascendante, la ré-
cursivité étant remplacée par une boucle.
On commence par les sous-problèmes de base (les
deux conditions initiales) puis on les combine pour
obtenir les solutions des problèmes de plus en plus
grands (valeurs de n croissantes). On stocke à
chaque fois le résultat obtenu.
Pour fibo3, les valeurs sont stockées dans un dic-
tionnaire alors que pour fibo3bis, elles le sont dans
une liste (car pour une suite l’indexation se fait par
les entiers naturels). Dans les deux cas, on a une
complexité O(n) en temps et O(n) en espace.

Enfin, on remarque que le stockage de toutes les valeurs
intermédiaires n’est pas nécessaire. En effet, seules les
deux précédentes sont utilisées pour calculer la valeur
suivante. On peut donc se contenter de mettre à jour
deux variables à chaque itération.
On obtient une complexité O(n) en temps et O(1) en
espace.

Version ascendante avec optimisation mémoire

1 def fibo4(n: int ):

2 a = 0

3 b = 1

4 for k in range(n):

5 a, b = b, a+b

6 return a

PC - Chrestien de Troyes 2/2 2025–2026


